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THE RESOLVENT OF THE LAPLACIAN ON
- LOCALLY SYMMETRIC SPACES

R. MIATELLO & N. R. WALLACH

Introduction

Let X be an n-dimensional Riemannian symmetric space of strictly
negative curvature. Such a space is described as follows. The identity
component G of the group of isometries of X is a simple Lie group
of rank 1 over the reals. The stability group -K of any point 0 € X is
a maximal compact subgroup of G and X = G/K with a Riemannian
structure corresponding to a multiple of the Killing form of G. Let A
denote the Laplace-Beltrami operator of X. If T > 0 and x € X,
let B,(x) be the metric ball in X of radius 7 and center x. Let {
be the volume of the metric unit sphere in X . Then there is a number
A = A(X) > 0 such that

Vol(B(x)) ~ (" fh, T — +oo.

Here “ ~ ” means that the limit of the ratio is 1. In the usual jargon of Lie
theory, & = 2p. We use this as the definition since it gives a geometric
interpretation of this important number and indicates that it has meaning
for a more general class of spaces. It is convenient to write the eigenvalues
of A in the form v — A /4. In this paper we construct a meromorphic
family R (x,y) of smooth functions on X x X — diag(X) such that

(1) R (x,y) is holomorphic in v for Rev > 0.

(2) If Rev >0, then R (x,y) ~ S(w)e VDI gk 1) 5 0.

(3) R,(x,») ~ Ld(x,y)"log(d(x, y))|’> as d(x,y) — 0. In
particular, this implies that for fixed x € X, R (x, -) islocally integrable
on X.

(4 If feC°(X), Rev >0, then

/XR”(X’ VA= + 1 /4 f(y)dV () = f(x).
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Property (4) will be proved for a larger class of functions in §2 (this is
crucial to the applications). Property (3) implies that the left-hand side
of the above formula makes sense. That such a family exists for Rev >
n/2 with slightly weaker estimates.can be deduced by general methods of
potential theory.

d(v) can be expressed in terms of the Harish-Chandra c-function (see
§1). Condition (2) implies that if Rev > #/2, then R (x, -) is integrable.
This combined with the growth of the volumes of the metric balls implies
that if T" is a discrete group of isometries of X such that I'\ X has finite
volume, then for each x and Rev > h/2,

P,(x,y)=>_ R, (x,7)
yer

is given by an absolutely convergent series for almost all y and defines an
integrable function on I'\ X . We prove (in §4) that P has a meromorphic
continuation to all of C and that the poles for Rev > 0, v # 0, are
simple and are located at the v such that Vi K? /4 is an eigenvalue of A
on L? (I\X). The residues at these values are computed in terms of the
corresponding eigenfunctions (Theorem 4.5). We also give a “functional
equation,” which in the special case when I'\X is compact, says that
P, =P_, (Proposition 4.3, Theorem 4.5).

The implementation of the continuation involves the construction of a
larger class of functions that are progressively less singular on the diagonal.
Set R, , =R, and, for Rev > h/2, set

RPH,,,(X, y) = / R (x, z)Rp,V(z, y)av(z).

We show that if p > n/4, then R, (x,-) isin L' and locally in L’
(the precise results can be found in §3) We sum these functions over T’
as above to obtain

Sx,y) = ZR (x,7y)
yel'

and get a holomorphic family of functions for Rev > i/2. We show that
if f is a function on I'\X such that A”f € L* *(I'\X) for 0 <m < N
(sufficiently large) and some ¢ > 0 (possibly depending on f), then

/ P, (x, (A= v+ /A f3)dV () = £()
nx

for Rev > h. This, combined with the fact thatif » > n/4 and Rev > &,
then Pr,y(x, -) is square integrable on I'\ X', allows us to calculate the
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spectral decomposition of P,  (x, -) using Langlands’ decomposition of

LZ(F\X ). Since we have good estimates on these function, we are able
to give results on the pointwise convergence of the spectral decomposition
of functions with sufficiently many derivatives in L2+8(I"\X ) for some
€ > 0 and the existence of an “Eisenstein transform” (see Theorems 4.2
and 4.7). Results of this nature have been proved in the case of a Fuch-
sian group acting on the upper half-plane in order to derive meromorphic
continuations of various forms of “zeta functions.”

As an application of these results we give, in §5, an asymptotic formula
for the number of elements of I'-x in a ball of X" centeredat y for x, y €
X, generalizing a result of Margulis [10, Theorem 2] (which applies to the
case when I'\ X is compact and of constant negative curvature). Although
our results only apply to the case of a locally symmetric space X of rank
1, the general formalism of §5 is meaningful in a larger context which
we now describe. Let X be a simply connected Riemannian manifold of
strictly negative curvature which has a compact Riemannian quotient. Let
B,(x) be the metric ball of radius 7 and center x in X . Then [10] (cf.
[91)

lim Vol(B,(x)) _4
T—+o00 T
with 4 > 0 depending only on X. /% has been interpreted (in [9]) as
the entropy of the geodesic flow on the sphere bundle of X. If " is a
discrete group of isometries of X acting freely, properly discontinuously,
and such that I'\ X' has finite volume then we consider the series

L(x Y, S) — Ze_(5+h/2)d(xa7.")
yerl

for x,y € X. Then the series converges uniformly and absolutely for
x,y fixed and Res > 2/2+¢, ¢ > 0. In §5 we give a conjecture about
these functions which we prove for X a symmetric space. In particular,
we prove that L(x, y,s) has a meromorphic continuation in s to C
and we relate the poles to the spectrum of the Laplacian. The proofs
make essential use of the earlier results on the functions | and certain
truncations which we used in the analysis of them. L(x,y,s) has a
simple pole at s = 0. We use our formula for the residue at 0 and a
Tauberian theorem to derive the following asymptotic formula:

(x) Y 1~/ VoK), T — oo

yel
B(x,y»)<T
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In [10, Theorem 1.2] a similar result is given for general I'\X' which are
compact with negative curvature (the right-hand side being of the form
C(Tx, ITy)e™). ~ \

Results similar to Theorems 4.2 and 4 7 have been proved by Good
[4] for the case when X is the upper. half-plane. Note that in this case
n = 2, so the smoothing which was necessitated by (3) above for large »
is unnecessary.

Theorems 1.1 and 1.2 (which give the basic properties of the R,) are
well known or at least easily derivable from the-literature ([6], [3])
have included proofs of these results using methods- which might be ex-
tended to a more general class-of spaces. .It would be very interesting
if there were analogous results to those in §§1 -and 2 for the part of the
“asymptotic expansion” of the zonal spherical function that decays at .
Calculations which we have done for complex groups indicate that the
generalization will probably be very, subtle.

The authors would like to dedicate () above to their long-time friend
Manfredo Do Carmo in commemoration of his sixtieth birthday.

1. Zonal spherical fqnctions

We begin this section by introducing notation which will be used
throughout this paper. Let G be a connected, semisimple Lie group
with maximal compact subgroup K. Let G = NAK be an Iwasawa de-
composition of G. We will assume dimA4 = 1. As is customary, we
will denote a Lie group by an upper case letter and its Lie algebra by
the corresponding lower case german letter. Let H denote the (unique)
element of a such that the smallest eigenvalue of adHI is 1. Then
n=n, &n, with adH = jI. Set p = dlmn1 and ¢ = dimn,. Then
dimG/K =n= P+gq + 1 We choose B 0 be the multiple of the Killing
form of g definedby B(H, H)=1.1f v € a. (the complexified dual of
a) and if a € A, a = exp(tH), then we will use the notation a” = e
We denote by A the functional on a defined by A(H) =1 (i.e., 4 is the
simple root) and by p the functional defined by p(h) = tr(ad hln) for
hea(i.e p={D+29)/2-2). ; S

Set A = {exp(tH)|t > 0} Then G = K(Cl(A)K . If a = exp(tH),
then we set - : ‘

y(@) = (e —e (¥ — e ™) = 2" (sinh 1)’ (sinh 21)”.
On A we choose the measure da =dt, a=exptH . On K we use Haar
measure normalized so that the total mass is 1. We normalize the invariant
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measure on G so that (if, say, feCr@G)

/f g)dg = /KAK (a)f (kyak,) dk, dadk,.

If U is an open subset of G with K UK U, then we will use the
notation C>° (K\U/K) for the space of all C functlons on U such that
f(kuk) fu) for ueU, k,, k, K. .

Let C denote the Casimir operator on G correspondmg to B It is
standard that if f € C*(K\U/K), then :

. 2
(1) Cf(exp tH) = %f(exp tH)+ (pcotht+ 2¢g coth’2t)%f(exp tH).

If g € G then we write g = n(g)a(g)k(g) with a(g) e N, a(g)e 4,
and k(g) € K. Let @ denote the Cartan involution of G correspondmg
to K. Set M = {k € K|Ad(k)H = H}. On M we use Haar measure
normalized to have total mass 1. We set N = (N ) We normalize the
invariant measure on N so that - ‘ :

/_ a(@) f(k(7)m) d7i dm = / Fik)dk
NxM K

That is,
(2) /_a(ﬁ)2p dn=1.
o N o -
The Harish-Chandra c-function is defined by the formula
(3) | ) = /_ am)"* dn.
N

Since 0 < a(m)” <1 for u(H) > 0, (2) implies that the integral defining
(3) converges absolutely and uniformly in v for Rev(H) > p(H). In
fact, it is well known that the above integral is absolutely convergent for
Rev(H) > 0 and that ¢(v) has a meromorphic continuation to a*c (cf.
[13, 8.10.16]).

If v € a,, then we set

(4) p(8) = [ alieg)”™ k.
. K
Thus ¢, € C*(K\G/K) and
(5) Co, = (v(H) - p(H) )p,.
As is w'etl known
(6) p,=¢_, and f=f(l)p,

if fe C®K\G/K) and Cf = (w(H)* - p(H)f.
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If we replace G by G — K, then the above uniqueness is no longer
true and there is another family of eigenfunctions for C. The follow-
ing theorem summarizes the properties of these functions. Although most
of the assertions about these functions can be deduced from the litera-
ture, we have opted to give complete proofs of the following two theorems
since our interpretation of the expansion of the zonal spherical functions
is somewhat different from that of the standard literature ([6], [3]).

Theorem 1.1. If v € a;, Rev(H) > 0, then there exists Q, €
C™(K\(G - K)/K) such that the following hold:

(@) The map v, g — Q (g) is continuous on {v|Rev(H) > 0} x
(G-K).

(b) v — Q, (&) is holomorphic for Rev(H) > 0 and has a meromorphic
continuation to ay.. Furthermore, 9, = c¢(-v)Q, + c(v)Q_, on G —
K . This last equation should be interpreted as an equality of meromorphic
functions.

(¢) There exists a constant C, such that

|7(exp IH)I/ZQV(exp tH) - e—u(H)z| < Cl te—(2+Rcu(H))t

for t >1 and Rev > 0.
(d) There exists a function d(v) such that

Q, (exptH) ~ d(w)t 7~ flog 1’1 = d(w)r " |log ™ ast— 0",

d(v) is meromorphic in v and can be calculated using (x) in the proof of
Lemma 1.3.

() If f € CP(K\(G - K)/K) and if Cf = (v(H)? = p(H)*)f with
Rev >0, then f=aQ, +bey,.

Proof. Suppose that f € C*(K\(G — K)/K) and
Cf=wH) - p(I))f.

Then

2
;—tzf(exp tH) + (p cotht + 2¢ coth 2t)%f(exp tH)

= (w(H)" = p(H)*) f(exp tH)

by (1). In the classical theory of regular singularities (cf, [12, 5.4, 5.5])
this differential equation has the following equality as its indicial equation
at t=0:

ss—1D+(p+q)s=0.
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The roots are s =0 and s =1 — p — g. This implies (cf. [12, 5.5]) that
if p+ g > 1, then the following limit exists:
(i) lim #%7! fexp tH).

t—0*

If p+g=1,then
flexptH) ~ C(1 + |logt]) ast— 0.

Once (a) and (b) have been proved, (i) combined with the above will imply
(d).
We now construct ¢, . We first note that (1) above can be written in
the form
CflexptH)

(*) _ —1/2 d* 12
= y(exp tH) ;tﬂ(exp tH)'" f(exptH) — y(t) f(exp tH)

with w(¢) = (pcotht+ 2g coth 2t)2/4 —psinh t'_2/2 —2gsinh 2%, We set
n)=wit)—-{p+ 2q)2 /4. If Im z > 0, then we consider the differential
equation
—¢"(0) + n(D)e(1) = 2°9 (1)

on (0, c0). ,

Set H' = {z € C|Imz > ¢}. Set u(z) = (¢’ — 1)/2iz for z € H}.
Put H' = H; . We note that

1 forzeH',

(i) u(z)| < { e

e for z€ H and ¢ < 0.

We will now use the method of Appendix 8 in [13] (which is a variant
of a technique in [2]) to construct a solution with the desired asymptotic
properties. Some of the results in the proof of this theorem will be used
in the proof of Theorem 1.2. ’

If f is a continuous function on [a, co), then set || f]|, = sup,., |/ (?)].
Let %, be the space of all continuous functions f on [a, co) such that
Ifll, < co. Then &, is a Banach space under the norm |-||,. If z € H: ,
f€%,,and t > a, then we set

Ly S0 = [ u(z(s = )6 = On(s)f() .
If we rewrite 7(t) in the form

p2/4—p/2 +q2—2q Dpq cosh

(iif) M) = =3 52 T Sinhzsinh %7
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then it is easily seen that

. S TR
(iv) In()] < Ce™ ift>1.

This implies that if Im 2>0 and t>a> 1, then

-2

L, f0l<c [ T se ™ ds-|fll, = C,(1+ 20X f1l,/4:

Thus, in particular, L, _ is a uniformly bounded farriily of operators on
®,,with |L, | < C,(1+2a)e /4. If ze H' , c>~1/2,and a> 1,
then one has

L, SOI<C, [ se™ ds- £, = €1+ 0”11,

One checks (asin [13, A.8.2.9]) that if ¢ > 1 then z— L, _ isa continu-
ous map of H', /, into the bounded operators L(%,, &,) on 4, , which
is holomorphic on {z € C|Imz > —1/2}.

“Fix a,>1 such that C,(1+4,)e"® <1/2. Fix & =%, . Set ||| =
IE ||a0 and L, = La;,z‘. If Imz > —1/2, then we put 4, = (I —Lz)_ll
(1 is the constant function indentically equalto. 1). Set g (¢) = e'z’hz(t)
for ¢ > a;. Then one checks that if Imz > —1/2, then

d* 2 ‘
v) (—;17 + n) g, =2g, fortza,
Also
. 1£,(1) - & < e~ / sin(s)|ds
(vi) t :
< Cle™™H 4y ifImz>0

for t > a,, and

(vi) Igz(t) _eizt| < e—tlmz/ S€S|T](S)|ds < Cle—(Imz+1)t(1 +1)
t
if Imz>—1/2.

Since the only singularities of the differential equation in (iv) are at 0 and
oo we see that g, extends to a solution on (0, co) for Imz > —1/2.
Let v € a; be such that Rev(H) > —-1/2. If k,, k, € K and if

t € R, t >0, then we set Q (k, exptHk,) = y(exptH)_l/zg[V(H)(t).

Then Q, € C*(K\(G - K)/K) and CQ, = (v(H)* — p(H)*)Q, . Notice
that Q satisfies (a), (b) (except for the meromorphic continuation and
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the formula for ¢ ) ,.of the theorem. Hence the remarks at the beginning
of this proof imply that Q satisfies (d). It is standard that (cf. [6])

2o~ Hly, (exptH) = c(v) for Rev(H) > .

(viii) lim y(exptH)
t—+00

(vi) and (vii) imply that if {Rev(H)| < 1/2 and v # 0, then Q, and

Q_, are linearly independent. Hence there exist holomorphic functions

a(v) and b(v) on the punctured strip |Rev(H)| < 1/2, v # 0, such that

9, =a)Q,+b)Q_,.

Since ¢, = ¢_, it follows that b(v) = a(-v). Also (vi), (vii), and (viii)
imply that b(v) = c(v) on the punctured strip. We have thus shown that

(ix) ¢,=c(-v)Q,+c(¥)Q_, onG~-K for|Rev(H)| <1/2,v #0.

We can thus implement the meromorphic continuation-of Q, by ob-
serving that (ix) can be written in the form

0, = (9, — c)Q_,)c(-v)""

This completes the proof of (b). Since (e) is now clear, the theorem follows.

Theorem 1.2. There exists a family of rational functions a,(v), k =
1,2,---, on a*C that are holomorphic for Rev(H) > 0 with the following
properties: :

(a) The set ¥ = {v|v a pole of some a,} is contained in a* and has
no finite point of accumulation.

() If v ¢ &7, then

k>1

Q, (exptH) = ¢ P (1 +3 ak(y)e‘”“)

with the convergence uniform for t > ¢ and. c sufficiently large.
(c) Let ¢ < 0 be given. Then there exist a nonzero polynomial f, on
ag. and an integer d(c) > O such that for each ¢ > 0

fv) (Q,,(exptH) _ e (1 + Y ak(y)e—zkt))i

1<k<N

< (1 + ll/(H)‘)d(C)Cc,Ee_t(Re(V+p)(H)+2(N+1)_6)

Jor t > 1 and Rev(H) > c. There exists ¢, < 0 such that we may take

fCO(V)El.
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Proof. 1In light of formula (iii) in the proof of the previous theorem it
is easily seen that

@) ne) =y be
jz1
with convergence absolute and uniform on sets of the form ¢t >a > 0.
We now consider the operators L, in the proof of the previous theorem.
We write 7(2) = X1 < ;<n bje_zﬂ + ny(t) = up(8) +ny(2) . Then one sees
easily that

(it) Iny ()] < Cye

for t>1.
This allows us to write L,as L, \+M, N with

—2(N+1)t

Lo nf0)= [ (2= 1)(s = Oay(5)1(5) ds

and -
M 0 = [ ulzls = 1)(s = Dmy()(5)ds.

If we argue as in the preceding proof, we find that A4, , is holomorphic
in z for Imz >N -1 and

IM, f(S)] < Cy(1+5)e | 1,

for s > ¢t > 1. On the other hand, if f(¢) = ek with k =0,1,2,---,
then
2j+k)t

L. n= 4Z(j+k(zz-—j— k) by

Since hz = (I — LZ)_ll =1+L1 +Lzl + ---, we can use the above
formulas to analyze the individual terms. The result now follows without
any real difficulty. q.e.d.

The next result is the key to the rest of the results in this paper.

Lemma 1.3. lim, . y(exptH)4Q (exptH) = —2v(H)c(v).

Proof. The observations at the beginning of the proof of Theorem 1.2
imply that the limit on the left-hand side of the above formula exists for
each v for which Q, is defined and this limit is a meromorphic function
of v. We calculate this limit using an indirect method which will also be
used in the next section. We note that on G — K we have

(€g,)e, —Q,(Cop,)=0.
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That is,
(v I/ZCQ) 1/2 }'I/ZQ( 1/2C(p) 0.

We use formula (x) in the proof of Theorem 1.1 to rewrite this as

2
0= { (gt—z - n(t)) (y(exp tH)l/zQV(exp tH))} y{exp tH)l/z(pV(exp tH)

2

~y(exptH)'>Q, (exp tH) {(;2

n(t)) (v(exptH)'p, (exp rH))}
2
= (%(y(exp tH)l/ZQV(exp tH))) y(exp tH)l/Z(pV(exp tH)

2
~ y(exptH)'*Q, (exp ) (gt—zw(exp tH)‘“«»,,(exptH)))

= % {(jt( (exptH)'"Q, (exp tH))) y(exptH)' ¢ (exptH)

- pexptH)Q, (exp ) (- (rexpit) P, (exp D)}
Thus

<dit(y(exp tH)l/ZQV(exp tH))) y{exp tH)l/z(py(exp tH)
— y{exp tH)l/ZQV(exp tH) (%(y(exp tH)l/z(pV(exp tH)))
~ (G;0.(cxotH) ) pexptH)p, (exp )

—y(exptH)Q, (exptH) (jt ,(exp tH))

is constant as a function of ¢. We calculate this value (as a function of
v) for Rev(H) > 0 by computing the limit in ¢ at +oc. We have that
if Rev(H) >0, then as ¢t — +oo

%(J’(exp tH)'*Q (exptH)) ~ —v(H)e """,
y(exp tH)l/ZQV(exp tH) ~ e~ "

%(J’(exptH)l/Z(pV(exp tH)) ~ v(H)c(v)e" ™",

y(exptH) g (exptH) ~ c(v)e” ™.

So the constant is given by —2v(H)c(v) .
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We note that Theorem 1.1(d) implies that
 tim y(exptHQ, (exptH) oo, (expti) ) =0..
a4 2 : !
So
. d
(%) lim y(exp tH)EQV(exp tH) = -2v(H)c(v)
‘ t—0* -

for Re v(H )’ > 0. The result now follows ‘by meromorphic continuation.

2. Analysis of the functions o,

In this section ‘we will study the functional analytic properties of the
functions Q, which were constructed in the previous section. Recall that
we used the notation n=p+¢g+1=dimG/K.

If 1 <s<oo,and [ isa measurable function on G, ‘then (as is usual)
we say that f € L if

loc .
J 1@ de <0
for each open subset U of G with compact closure.
Lemma 2.1. -Let v € ap. If Q, is defined;, then Q, € Lloc If
Rev(H) > p(H), then O, € L'(G).

Proof. Let U be open in G with compact closure. Then there exist a
and b, 0<a < b < oo, suchthat U C Kexp([a, b]JH)K . Thus,

/U 10,(g)ldg < / y(exp tH)|Q, (exp tH)| dt.
If 0<¢<b, then | ‘

y(exp tH) < Gyt~ '
and Theorem 1.1(d) implies that '

—n+2

1Q, (exptH)| < C, 4t

with C, , < oo where Q, is defined. Hence if 0 <t<b,then

| log#|’2

y(exp 2H)|Q, (exp tH)| < C,C, ,t|logt|>.

This yields the first assertlon
We note that

y(exptH) < AP
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for t > 0. Thus, Theorem 1.1(c) implies that if Rev(H) > 0, then there
exists C' < oo (depending on ») such that

y(exp tH)|Q, (exptH)| < C' PRV gor 'y > 1,

If we set U = K exp([0, 1]H)K , then

/ 10,(2)1dg = / 0,(2)dg + / ~ y(exp tH)Q, (exp tHD)| dt.
G U . ’ 1

This combined with the first assertion implies the second. » g.e.d.
We define the inner product { , ) on g by (X, Y)=-B(X,8Y). If
g € G, then we set e : :

llgll = { 1Ad(g)ll s ifn, =0,
IAd(E)ls ifm, #0.

We note that if g € G and if k,, k, € K, then [g]| = [lg~"|| = lik, gk, .
If 4> 0, then we set C, (G) equal to the space of all functions f €
C™(G) such that

Py )= zggllgll_”le(g)l <00

for all X € U(g). We endow C :" (G) with the topology induced by the
seminorms Py '
Lemma 2.2. If f € C;°(G/K) and Rev(H) > p(H)+ p, then

/G 0, (x'Y)(C = v(H)? + p(H)P) f(v) dy = —20(H)c(v) f(x).
In particular, if we set 6,(f) = f(1), then (C — y(H)2 + p(H)Z)Qu =
—2v(H)c(v)8, in the sense of distributions on C;°(G/K).
Proof. If fe C.(G), then

| <y (DIevl® < lixl*py (NIl
Thus,

[, nsoidy = [ 10,0)f el dy
G G
<Ixl'p, o) [ 10,01 Iv1* dy
~ 1%, () [, 7@)Q, @) el da.
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Since y(exptH)| exptH||"|Q, (exptH)| < Cﬂ,ue("“’(ﬂ)"k”w»’ fort>1,

and y(exptH)| exptH||*|Q, (exptH)| < C;Ut(l - logt)'s"’2 for 0<t<1,
we conclude that, if Rev(H) > p(H) + 1, then

L1067 70l dy < € LIxiPp, ().
G

In light of the above calculations and inequalities it is enough to show that
(*) /G 0, )(C — v(H)' + p(H)") f(y)dy = ~2v(H)c(v) f(1)

for f € C:"(G/K) and Rev(H) > p(H) + u. We will assume that v
satisfies the inequality of the lemma throughout the rest of the proof. The
formal aspects of the argument that follows are justified by the inequalities
at the beginning of this proof.

For f e C°(G/K) we set

7°0) = [ foey)dk.

Then the left-hand side of (x) is equal to
| 1@0,@)C ~v(E)? + ()1 (@) da
= tim [ 2(0(Q, 1S (exptH) ~ (CO, () (expih) dr
—tim [* 00,050 texp o)

r—0
d 1/2

- 200 70,00 (et di,

where p(¢) = y(exptH), Q,(t) = Q, (exptH). Here we have used ()
from the proof of Theorem 1.1. We conclude that (x) is equal to

B zl_i.%1+ [y(t)l/z <Qu(t)%(y(l)l/2f0(exp tH)))
_ <%(?(l)l/zgu(t))ﬁ(exp tH)>] ‘

Theorem 1.1(d) implies that lim, + y(¢)Q,(¢) = 0. Thus the above ex-
pression is equal to
. d
lim f*(exp tH)y(1) - Q, (1),
t—0* t
which equals —2v(H)c(v) f(1) by Lemma 1.3. The proof is now complete.
g.e.d.
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We note that if n =2 or 3, then Q € leoc' Unfortunately (for our

purposes), if n > 3, then @, is not an element of leoc . The rest of this
section is devoted to the proof that certain convolution powers of @, with

itself are in leoc (or better).
Lemma 2.3.

0,00, () iflxl > I,
kyv)dk = v v
J 0.txk {(o,,(X)Q,,(y) o 1xl < 1,

Jor all v for which Q, is defined.

Proof. We prove the result for Rev(H) > 0. The general assertion
would then follow by analytic continuation. In this range the only singu-
larities of Q (x) arein K. We set

86,0 = [ Q,(xkp)dk.
K
Obviously, g,(x,y) is defined if xKy N K is empty. If xKy N K is
nonempty, then xK = Ky~'. So llx|| = ||¥il. Thus,

B, is defined and real analytic on the set
{(x,y) € GxGlIx|l # [I¥lI}-

Let C, (resp. C)) denote the Casimir operator in the first (resp. sec-
ond) variable in G x G . It is clear that

C.B,(x,y) = (v(H)
(2) 2
if |lx] # |lyil. We also observe that

(3) B, (kxk,, kyyk,) =B, (x,y) forx,yeG,k,eK,1<i<4

(1)

The lemma will follow from
If U is a connected K-bi-invariant neighborhood of X in G
(4) andif f € C*(K\U/K) satisfies Cf = (V(H)2 - p(H)Z)f on U,
then f = (f(1)¢u|u-
Indeed, set u(tr) = f(exptH). Then u satisfies the differential equation
(1) in §1, where defined. We note that U = exp(JH), where J is an
interval of the form [0, b). Our assumption is that u extends toa C*°

function on (-b, b) if we set u(—¢) = u(¢). But then u extends to a
C* function on R. We set g(k, exptHk,) = u(t), k;,k, € K, t e R.
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Then g € C*(K\G/K) and Cg =-(1/(H)2 - p,(H)z)g, since gy = f.
Condition (4) now follows from (6) in §1. gq.e.d.
Let xe G=K. Set U_={y € Gl||yll <|xIl}. Then

C,8,(x, ¥) = W(H) - p(HD)B,(x, ¥)

for ye U, . Since’ U, is an open connected K-bi-invariant neighborhood
of K, (4) implies that - '

- B(x,»)=8,(x, e,
But the formula for B, vyields that' 8, (x, 1) = Q (x). Hence, S (x,y)
= Q, (x)g,(») for ||x|| > ||y||. Similarly, if y € G- K, then 8 (x,y) =
9,(x)Q,(y) for xe U, .
Note. If x € K(exptH)K , then
- (d +2pcosh2n)'* ifg=0,
Xl =
(d + 2p cosh 2t + 2qc0sh4t)1/4 ifg>0,

with d = dim(m + a). o

We can therefore rephrase the above lemma in the following way.
Lemma 2.3'.

Q, (exptH)p, (expsH) if|t| > [s],
@, (exptH)Q, (expsH) if|t] <|s|.

If Rev(H) > p(H) and r =1,2,.--, then we define Q, , recur-
sively as follows:

Ql,szv’ Qr+1,V=Q1,V*Qr,V’

/ Q, ((exptH)k(expsH)) dk = {
K

Lemma 2.1 implies that Q, € LI(G) forall r > 1 and Rev(H) > p(H).
Lemma 2.4. Let Rev(H) > p(H). There exist constants c,(v), c;(u) ,
and ¢ (v) such that

1Q, ,(exptH)| < c,(u)t'_ly(exp tH)—l/ze_ Rev(H)t fort>1,

EWQ+ 7 yexpt)Y ifr#n/2,0< 1] <1,

|Qr,y(exptH)l < { c;’(y)(l +log|t[) l'frz n/2, 0< IZI < 1.

In particular, if r > n/2 then Q,,V is bounded in a neighborhood of K .
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Proof. If r = 1, then this lemma is just a:restatement of (c) and
(d) of Theorem 1.1. To prove the result for » > 1. we first calculate

Q.. ,(exptH):
(exptH)
/ Q, ( 0, (x~'exptH)dx

- /K . Ky(a)Q ,(k,aky)Q, ((k,ak,) ™" exp tH) dk, da dk,

r+1 v

- / (@)Q, ,(a)Q,(a 'kexptH)dadk.
AYxK ’

There exists k; € K such that kjak, '— 47" for a € A. Thus Lemma
2.3' implies that

0y, (expit) = [ " 3900, , (expsH) [ Qe stkexothak ds
= /oo y(s)Qr,y(expsH)Qu(expsH) ds-¢, (exptH) .
+ /01 7(8)Q, ,(expsH)y, (expsH)ds - Q, (exptH).

We will use this formula to prove the inequalities in the lemma by induc-
tion on r. We have already proved them for » = 1. So assume them for
r. We note that (viii) in the proof of Theorem 1.1 implies that

I/ZeRe v(H)t

(1) o, (exptH)| < " (w)y(1)” fort>1,

if Rev(H) > 0.
We first prove the inductive step for t > 1. We rewrite the identity
above as

QTH,V(exp tH) = /tcoy(s)Q,’V(expsH)Qy(expsH) ds-¢ (exptH)
@) + [ 7610, , (expsH)p, (expsH) ds- O, (exp )
1
+ /(; 7(8)Q, ,(expsH)p (expsH)ds-Q, (exptH).

If we use the inductive hypothesis and (1) to estimate each term on the
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right-hand side of (2) we have
1Q,,,,,(exptH)|

< c,(V)cl(u)c"(u)/ g1 2Rev(H)s ds'y(t)—l/ZeReu(H)t
t

t
+¢,(w)e )" @) / s ds . p(r) e Rev X

1
+ cm(V)y(t)—l/Ze—— Rev(H)t

with 1

") = cl(l/)/0 y(s)1Q, , (expsH)p, (expsH)| ds < oo

by the inductive hypothesis.

Inequality (3) clearly implies the asserted inequality for ¢ > 1. We
are left with the inequalities for 0 < ¢ < 1. As in the previous step we
start with the expression (2). We are still assuming the result for r > 1
and proving it for r + 1. Set D(v) = sup,_,, |¢, (exptH)|. Then, if
0 <t <1, equality (2) yields

oo
IQH—I ,,(CXptH)[ < cr(V)Cl(I/)D(U) Sr—le—ZReu(H)s ds
, 1
1

+c;(u)D(u)/ 5|0, ,(expsH)| ds
+¢,()D() /0 y()1Q, ,(expsH)|ds - ty(t)”"
= A(t) + B(t) + C(¢).

We now look at the three possibilities: r+1 < n/2, r+1 =n/2, and
r+1>n/2.If r+1 < n/2, and we apply the inductive hypothesis, then

B(H) < b (v) / Py ds < b )L+ 20,

r+1

t
c@t) < d,(u)/ s as o0 <d ()™

0

with b (v) and d,(v) appropriate finite constants. This proves the second
inequality in this case. We now look at r+ 1 = r/2. Then in expression

(4) we have
30 <)+ 80) [ % < b,0) + o os)

c s [ & s 00 <dy ) <oo,

r+1
0
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which completes the argument in this case.

If r+1>n/2 and r < n/2, then either r=n/2 or r=(n—-1)/2 =
(p+4q)/2. If r=n/2, then the inductive hypothesis asserts that if 0 <
s <1, then

|0, ,(expsH)} < b(v) +d(v)|logs|.
If r=(p+4q)/2, then

10, (expsH)| < b(v)s” " = b(v)s ™.
Thus, in both cases,
|0, ,(expsH) < b'(v)s™'

for 0 < s < 1. So in this case we see that B and C are bounded for
0 <t < 1, which implies the inequality. If r > n/2, then it is easily seen
that B(¢) and C(¢) are bounded. The verification of the inductive step is
now complete.

Corollary 2.5. If r > n/4 and Rev(H) > p(H), then there exists
e=¢ >0 suchthat Q, , € L’(G) for 1 <s<2+e. If r>n/2, then
Q,,¢€ L(G) for 1 <s< 0.

Proof. Assume that Rev(H) > p(H). The preceding lemma implies
that if U is a K-bi-invariant neighborhood of K, then Q, € L*(G-U)
for all 1 <s < co. It also implies that if r > n/2, then Q,’V € L’(G) for
all 1 <5 < oco. We must therefore show that if r > n/4,then Q, , € Ly,
for 1 <s<2+¢ for some ¢ > 0. So assume that » > n/4. Lemma 2.4
yields that if 0 < ¢ < 1, then |Q, ,(exptH)| < C(8,r, v)(1+ 77"
forall 6 > 0. Set U = Kexp([0, |JH)K . Then

() /U 0, (&) dg = /0 ' ¥(1)1Q, , (exptH)|** dt
<C@,r,v) /0 SO0+ T
Choose 0 < J <1 such that 2r —d > n/2+J/2. Then
x) <2’ c@,r, u)/ol TN g I gy

1
< c/ (1+ 277" 4y,
0

The last integral is finite if ¢ < 2d/n. This completes the proof. q.e.d.
We now generalize the functional analytic interpretation of Q, to Q, , .
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Lemma 26. If 1 >0 and Rev(H) > p(H)+ p, then »
[0 TINC — o 4 p )Y () dy = (~20(H)ew)) 1)

for fe C°°(G/K) : ‘

Proof. It is enough to prove the lemma for x =1, that is, to show that
(C—z/(H) +p(H) ) = (=2v(H)c(v))'d in the sense of distributions
on C°(G/K). If r = 1 this is the assertion of Lemma 2.2. Now

(C—v(E)+p(HY*(Q, , %0, ,)
=(C~v(H) + p(H)Y'Q, ,*(C —v(H)' + p(H))Q, ,
= =2v(H)c(v)(C ~ z/(H) + p(H) ) Qr,u *.0
= ~2v(H)e(v)(C - v(H)' + p(H)))' O, ,

So the lemma follows from the obvious induction.

3. The functions Pr’u

Before we introduce the functions of the title of this section, it will
be necessary to give some results on convergence and regularity of certain
series over discrete subgroups of G . These results are no doubt well known
to the experts, however we have included proofs since there is no easily
accessible reference to them which we could find.

The first result is quite general. Let ‘G be a reductive Lie group and let
¢ be a continuous function on G such that

(i) p(x)>1, x€a.
(id) o(xy) < p(x)p(¥), x,y€q.
(i) /G(p(g)_l dg < co.

Let I' be a discrete subgroup of G.
Lemma 3.1. If t > 1, then the series

Yo T T = (x, y)
yel

converges uniformly on compacta to a continuous function on I'\G/K x
NG/K. Furthermore ¥.(x,) € L°(\G/K) for all t > 0 and
1%, (x, )l < Cio(x) for t>0.
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Proof. Since ¢(x”'y) 2 p(»)p(x)™ and p(x)' 2 p(x)° if 1> s, itis

clear that
¥(x, y) £ ¥y(x, ) < p(x)¥y(1, y).

Thus, to prove the lemma, it is enough to show that ¥ (1, y) = ¥(y)
defines a function in L™ @\ G). Thisis proved in the followmg (standard)
way. Let U be an open ‘neighborhood of 1 in G with compact closure
such that Uyn U7 is empty for each pair y, 7 of distinct elements of I".
Let C, =sup,.,¢(g). f u€ U and yeT, then g(uyg) < C,p(vg).
Thus '

[U olure)  du Clo(re) vol(U).

If we sum over y and use the disjoihtness assumption, then we find that
c3 volU)¥(e) < [ plug)™ du= [ o™ du
G G

This completes the proof. q.e.d.

We now assume that G is as in the previous sections. Let || - || be as
in §2. If g = k, exp(tH)k, , then |lg|| > el Also y(r) < Ce™" for
¢t > 0. Thus,

o0
: [ gl """ ag < c, / P gs = ¢ 1.
G . X 0 . . .

This implies that the above lemma applies to (p(g) = [ gl?**** for any
e>0.

We now begin the study of the series that are the subject of this paper.
Let T' be a discrete subgroup of G of cofinite volume such that, if it is
not cocompact, then it satisfies Langlands’ axioms [8]. If Rev(H) > p(H)
and r > 1, then Qr’y(x“l-) e L'(G) for each x € G. Thus Fubini’s
theorem implie’s that, for each x € G, Zyel" (Qr,y(x_lyy)l converges for
almost all y € G. We set

8,(v) = (=2v(H)c(v)) ™

and
-1
P, (x,y)=d,))_ 0, (x" yy).
vel

If Rev(H) > p(H), then P, (x,-)€ L'(I\G/K) foreach x € G.

We now introduce a simple “truncation” procedure to study the analytic
properties of these functions. Let u € C™(R) be such that u(x) = u(-x),
u(x) =0 for |x| <1, u(x) =1 for [x| >2,and 0 < u(x) <1 for all
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x € R. Weset B(k, exptHk,) = u(t) for t e R. Then g-€ C*(K\G/K).
We set

P, ,(x,1)=380)Y B(x"'m)0Q, ,(x"w).

yel

Lemma 3.2. Assume that Rev(H) > p(H). Then P, € C*(I'\G/K)
x C*(I\G/K) and it is holomorphic in v . There exist constants Gy
such that if € > 0, then

= 2p(H)+e
P, (x> Mo <€,y Llx .

r,l/,El

As a function of v, f’r’u(x, y) is holomorphic in this range. Finally,
if 1 < s < oo, then the map x — f’r (X, ) is continuous from G to
L*(I"G/K).
Proof Lemma 2.4 implies that if Rev(H) > p(H), then
: -1
1B()Q, ,(¥)| £ C, ge,lIx] (1 +log x|

Suppose that Rev(H) > p(H) + 26 with 6 > 0. Then

—-0-=2p(H

16,1)8(x)Q, ,(X)| < D, g, llxf =27
with D, continuous in the half-plane Rev(H) > p(H) + 26. This
implies that if Rev(H) > p(H) + 28, then the series defining P, , is

dominated by
-1 —6-2p(H
D",RGUZ”x yy” p( )‘

yell

—Rev(H)—p(H

The convergence of the series defining f’r’u and the L™ estimate in the
lemma now follow from Lemma 3.1 and the observations preceding the
statement of this lemma. This term-by-term domination also gives the last
assertion of the lemma.

We now prove the regularity assertion. Let C be the Casimir operator
of G. If X,,---, X, is a basis of g and if the X’ are defined by the

. n .
equation B(X,, X’) =4, ,then C =3, X, X . Thus,

ij>
C(BQ, ,) = (CAIQ, , + I (XBX'Q, )+ D (X' PXQ, ,)+5CQ, .

Weset Q) , =0 in G—K (to be consistent, Q, , should be defined to
be 6,;). Thenon G — K we have

(€ —v(HY + p(H))Q, , = —2w(H)c()Q,_, .
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We note that the expressions (CB)Q, ,, (X,.B)(XiQr,y), and (X'B)
(X iQr,V) are C* with compact support. We therefore conclude that

(C—v(HY + p(HPP, (x,)=B,_, ,(x,)+F, (x,)

with F, (x, ) abounded element of C*(I'\G/K), F, , € C*(I'\G/K x
N\G/K ) and P =0. Let C| (resp. C,) denote C acting in the first

(resp. second) factor of a functlon on G x G If we interchange the roles
of x and y in the above discussion, then we find

(Cy+Cy = 2(v(H)* - p(H)))"'P, , € C™(T\G/K xT\G/K).

Elliptic regularity now implies that f'r , €C “(N\G/K xT'\G/K). q.e.d.
If r>1 (resp. r=1) and Rev(H) > p(H) (resp. Q, is defined),
then we set

P, (x,y)=P, (x,»)-P, (x,y)
=3, > (1 B pNQ, ,x vy).

yell

The point here is that Q, b= = @, is meromorphic in v for v € uC , but
if r>1,then Q,  has only been defined for Rev(H) > p(H).

Let p denote tile canonical projection of G onto I'N\G/K . If p(x) #
p(¥), then the above sum is finite and the number of terms is dominated
by a power of ||x||. The following lemma is therefore straightforward.

Lemma3.3. Ifr>1 (resp. r=1) and Rev(H) > p(H) (resp. Q, is
defined), then Pr , is C% on (\G/K)x(I'\G/K)-diag(T\G/K). If r >
1 (resp. r=1) and p(x) # p(y), then v — P ,(x,¥) is holomorphic for
Rev(H) > p(H) (resp. holomorphic for Reu(H) > 0 and meromorphic
on ag).

The following is the first of the main results of this paper.

Theorem 3.4. If Rev(H) > p(H), then P, is continuous on
(I'\G/K) x (T\G/K) — diag(T'\G/K), and zfp(x) ;6 p(y), then v —
P, (x,¥) is holomorphic. If r > n/4, then there exists ¢ > 0 such

that P, , € L**(I\G/K) and, for each 6 >0,

20(H)+8
I, ,(x, ), < C, , slixl

furthermore x — P, (x,-) is continuous from G to L**(T\G). Finally,
if r>n/2, the P, (x, ) € L°(T\G/K).
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Proof. Lemmas 3.2 and 3.3 imply all of the assertions except for those
concernitig L” . In light of Lemma 3.2 it is enough to prove all of these

assertions for P . Since supp(1 ~ B) is compact, there exists C, >0
such that if ( (y) # 0, then (ly|| < C;. Thus
(1) Wl < Cylixfl i 1= Blx- 'v)#0.

Supp0se that f e L’(G) with 1 <s < o0, and suppf cDp={xedq|
flx]l < R} with R < o0. We set
Zf (vg).

If p € L"(1\G) with 1/s+1/v =1, then
/ S ((r2)9(@) dg = / f(2)9(8)| dg

yEF

i 1/v
= f If(&)e(g)ldg <IIfl (/ Wg‘)l”dg)
DR DR

by Hélder’s inequality.
Consider the canonical map n,: Dy — I'\G. Then

p/(g)e(g)dg
neG

7 ()1 < Hp € TPl < BH < Gy vol(Dyo):
Thus, S .
/D lp(g)l" dg < C,vol(Dg)lolls.

On the other hand,

vol(Dpz) = / y(a)da < C3/
lla <R 0

Here the b > 0 which comes into the expression comes from the observa-
tion that there exists 1 < C < oo such that C '’ < llexptH|| < Ce’ for
t>0.

We conclude that

t/v ‘ _
(/D r(ﬂg“)i”dg) < R,

b+2log R
2! dt< C, R¥®

which implies

h
(2) oI, < CRYO )10,

lg =
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Set ¢, ,=(1-8)Q, ,. If r>n/4 and Rev(H) > p(H), then ¢, €
L**(G) for some ¢ > 0 which is independent of v (see Corollary 2.5).
We apply the above material to f (y) = 5,(1/)(1),’,,(x'1 ¥), and note that
py = P',,V(x, ). So (2) above implies that P',,V(x, ) € L2+€(F\G/K).
Also, from (1) it follows that the “ R” for f is C||x||. So (2) shows that
if 1/v+1/(2+¢)=1, then

; 4p(H
1P, (x5 M., < C, M #E.
Let w be a compact subset of G . There exist constants Cw,,i,y depending
onlyon r, v and o such thatif x, z € w, then

’

1P, ,(x, ) =P, (2, My, = D, =Dl
‘ < Ca) r, V”L(x)(pr,y - L(Z)(pr’y,”2+5

with L(x)f(y) = f (x~'y). This implies that x P ,(x,+) is continu-
ous from G to L%( (MG/K).

If r > n/2, then Corollary 2.5 combined with (2) YICldS that P L)
e LT \G) The result now follows. gq.e.d.

Let L ('\G/K) denote the space of all f € C™(I'\G/K) such that

Xfe L2 E(F\G) forall X € U(g) and all ¢ such that 2 > ¢ > 0. (This
makes sense since I'\G has finite volume.)
Theorem 3.5. Suppose that r > n/4 .and Rev(H) > 2p(H). If f €

L’ (T\G/K), then

2

/r B8 VC =V H) + pUH 1) dy = S ).

Proof. let P = MAN be a percuspidal parabolic subgroup of G. Let
&= coA;LK be a Siegel set for P. Then our hypothesis implies that

H
IXf(8)l < Cy ,lgl? %

forall ¢ >0, X € U(g), and g € & (cf. [14, 5.A.3]). If T'\G is not
compact, then there exists a finite collection &, .-, of these sets
such that G = |J,I'*,. We therefore see that

IXf(&)l < Cy el

forall e>0, X e U(g) and g€ G. Thus, feC (H)+E(G) (see Lemnma
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2.2) forall &> 0. Put u(g) = (C — v(H)* + p(H)*)' f. Then

/m 6, Yu(y)dy = 5,(v / S0, , () dy

?er

= 5,(v) / S0, (" y)ulry)dy

yel‘
=6,0) [ 0., yyuty)dy.

The result now follows from Lemma 2.6.

4. The meromorphic continuation of P,

To carry out this continuation we will calculate the spectral decompo-
sition of the P,  for r > n/4 and Rev(H) > 2p(H). We therefore
assume (until further notice) that the parameters satisfy these conditions.
Let Q= M Ay N be a percuspidal parabolic subgroup. Let E(Q, u, g)
denote the right K -fixed Eisenstein series with respect to P. Here u € a*C
will be identified with u(HQ) € C (notice that “the H, ” is uniquely de-

termined by Q and K). If Reu =0, then E(Q, u,-) € Li:(l"\G/K)
(cf. [11, A.2.3]). Theorem 3.5 now implies that if Rev(H) =0, then

(P, (x,), (C—T(H) + p(H)YEQ, n)) =E(Q, i, x).

Hence,
(P, (x,), E(Q. w)=E(Q, p, x EQ, &, 0/’ —v(H)Y.

Similarly, if ¢ € Lio(F\G/K) and Co¢ = (uz — p(H)Z)(o , then Theorem
3.5 yields that

(P, (x,"), 0) =90/ (1’ — v(H)*).

Let {p;} be an orthonormal set of eigenfunctions of C in LZ(F\G/K)
with Cp, = (v — p(H)")p, such that if p € L(T\G/K) and p is an
eigenfunction of C, then ¢ isin the linear span of {¢ i} (it is well known
that such a sequence exists). Let P,,---, P, be a complete set of repre-
sentatives for the I'-conjugacy classes of percuspidal parabolic subgroups
of G . Then Langlands’ decomposition of L? as given in [11; Proposition
A.2.3] now gives
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Theorem 4.1. If Rev(H) > 2p(H) and r > n/4, then as an element
of L*I\G/K)

' ?.(x)
Brpl: )= 27767 j

, i, X
Y )E(,,lu)du
(u* +v(H)?Y
Theorem 4.2, Let r > n/4. If x € G, then
lp;(x |E(P., in, x)
¥.(x) = J / ———~—d,u < oo.
Z( +| Z (1+ |uf?)>

The series and the zntegrals defining ¥, converge uniformly on compacta
of T\G and ¥ (x) < C,||x||**"** for each ¢ > 0.
Proof. If z € C, then clearly

lw? + 27|

e <(1+1z)

for all w € C. Hence,

e, i, x)P
————————d
Z Z //1]>T #

S (L+v?) (1+ [}
<(1+ |u<H>|2>2’T,,m,T<u, x)
with
9, () \E(P,, in, x)|*
lI’r (Va x) = j / -—l;_—_r
T ,z,:,,l v(H) [ Z w>r |1+ v (H)P

In particular, this and Theorem 3.4 imply that
2 2 ap(H
¥,(x) < (1+ [p(E)P)P, ,(x, ) < C, x|l

foreach ¢ > 0. ¥, , ((v,-) is a continuous function for each r > n/4
and Rev(H) > 2p(H). Hence ¥, ,, r(v, ) is continuous for each r and
v as above. In particular, given ¢ > 0 and x € G there exist m,, T,
and U,_, a neighborhood of x in G, such that ‘Pr,m ,Tx(u, y) < g for
y € U, . Thus if w is a compact subset of G, then the obvious covering
argument implies that there exist » and S such that, if x € w, then

¥, , r(v,y)<e for m>n and T > §. This completes the proof.
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Note. If r > 2, then one can prove that t‘l‘ wy<c [|xu2”(H)+‘E for
all >0 usmg the above argument and Lemma 3.2.
Propesition 4:3. Let r > n/4. Then P, (x,:) has a meromorphic

continuation in v, as a distribution, to az such that the following hold.
(1) The poles for Rev(H) > 0, v # 0, are of order r and are-eon-
tamed in the set of v, such that v;(H )2 -p(H )2 is an eigenvalue of C on

LAT\G/K).

2
P, _,(x,)=P, (x, ’_
2w 9| E(P, —p, X)E(P;, 1, )
r— D! g5 ﬂzuzj:cf (y(H)'-i—:u(H))r
2 9! Z X)E(P,, ~u, ")
(r=D'ou _ " (#(H)—V(H)) |

(3) If Rev(H) > 0, then P, (x,-) € L*(T\G/K) where defined.

Proof. Theorem 4.1 and Theorem 4.2 imply that Pr, ,(x,+) has a
meromorphic continuation (in LZ) to Rev(H) > 0 with only possible
poles at the v; with v, asin (1) (notice that we have identified v i with
v;(H)). If Rev(H) >2p(H), then we set

, N 9;(x)
P, alxs0= ; i - V(H)z)rq’j

and , o

: i, x) .

| / f —2 L FE(P,, in)du.

r,v, C Z y + V(H ) ( 1] ) u
Clearly, P, ’. 4(x,+) has a meromorphic continuation to all of a;. with
values in L? (I'\G/K) . The possible poles of P,  ,(x,-) for v #0 are
at the &v; and of order r. Furthermore, P, d(x =P, 40,0,
To prove the theorem we must therefore analyze | c(x ).

Let R >0 andlet ¢ > 0 be so small that E (P, v) is holomorphic for
|Re V(H){ < ¢ and [Im V(H)] < R. We consider the curve % :

IR vty 1R+£
& 1

— iR w1 R+ &
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If fe C*(I'\G/K), then we set
a;(u) =o; (4)= E(P;, u,g)f(g)dg.
G
If 0 <Rey,(H)<¢/2 and |Imyy(H)| < R/2, then

EP
(-1) l/ (———l/i—X)— (in)du

2 r v (Y %
[ E®, #, ) E(P,—u,X)

By calculating the above residue in the obvious way we find that

E(P;, —u, x) 1 9! E(P;, —p, x)a;(p)
Res#=l’ (H) 2 2 raj('u) = 1) —1 Iz .
o (- vy (H)?) (r=1! oy (u(H) + vy))
Let Z, be the contour given by:
IR'——-.iR+¢
g |
—iRy——- — iR+¢
Then for v, as above we have
' E(P;, —p, x)
P, (x,8)f(g)dg=-i / o (1) du
/r\c; aCie Z % +V0(H) )' oW
_ 27: 8! Z —p, x)a (1)
(r—=1! gu! i y(H +u0)) '

1=

This implements the meromorphic continuation (as a distribution) of
P, , [(x,g) totheset |Rev(H)| <e&/2, |[Imv(H)| < R/2. We therefore
have a meromorphic continuation of Pr’u,c(x , &) to a neighborhood of
Rev(H) > 0 such that the only possible pole of Pr,uo,c(x, g) isat 0
(the pole if it exists is of order 2r — 1). The asserted functional equation
(where both sides make sense) is now clear and implements the meromor-
phic continuation to a.. g.e.d.

We define P, , =4, (6,(f) = f(1) for feC(I\G/K)).

Lemmad4.4. If Rev(H)> p(H), then (C—v(H) +p(H)*)P,,, ,(x,")
=P, (x,) (in the sense of distributions) for r > 0. '
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Proof. 1f fe C®(T\G/K), then
/r Bl 8C - Vv(H) + p(H))f(g)d

=6, [ 041 L7 8(C —v(H) + (H)) (8 ds

=0, [ @, 9)f()ds = [ P, (x, 0)/(s)de.
G NG

Theorem 4.5. Let {v;} be asin Theorem 4.1. If r > 1, then P, has
a meromorphic continuation (in v) to ag., in the sense of distributions. If
Rev(H) >0, v #0, and if v isapole of P, (x,-), then v = v, for
some j and the pole is at most of order r and principal part at v; equal

to that of
p;(x)
Y

If 0 is a pole of Pr,l/ , then it is a pole of order at most 2r.

In light of the preceding two results this theorem is now clear,

The following result will be used in the next section.
Proposition 4.6. P1 , has a meromorphic continuation to aC as an
element of C* (N\G x I'\G). Furthermore, if Rev(H) > 0, then the
principal parts of P, , and of P1,y (as functions of v) are equal.

Proof. Lemma 3 3 implies that P' » is meromorphic in v and holo-

morphic for Rev(H) > 0. Thus P P1 Y P'1 , is meromorphic in v
and has the same principal parts as P1 for Re l/(H ) > 0. In the proof
of Lemma 3.2 we have seen that the followmg equation holds in the sense

of distributions for Rev(H) > p(H):
%) (€, —v(H) + p(H)) +(C, — v(H) + p(H))P, , =F,

with F, € C*(I'\G x I'\G) and meromorphic in v € a.. Thus (x) is
true for all v for which both sides of the equation are meaningful. Elliptic
regularity now implies the proposition. q.e.d.

We conclude this section with an application of Theorem 4.2 to the
pointwise convergence of the spectral decomposition of an element of
L*T\G/K).

Theorem 4.7. Let r > n/4 and assume that f € C¥(I\G/K) is such
that C' f € L2+6(1"\G) for 0 < j <r and for some &€ > 0. Then

S0 = AL o)+ e, [0 BBy ) ECP,, i, 3 du
j=1

i
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with the series and integrals converging uniformly on compacta of I'\G/K .

Proof. Since C’f e L***(I\G/K) for 0 < j < r, the equation above
holds in the sense of Lz(F\G) with f replaced by c’ f for j inthis range
[11, Proposition A.2.3]. Then the right-hand side of the above equation is
majorized termwise in absolute value by

(€ =AY f o) 10,00
62 V2 — v(H)
& |<(C - j’y)rf’ E(Pj’ l#))l |E(Pja i.u’ X)I
¥ ;Cf/o 4 o 4

*

where A, = v(H )2 - p(H )2 . We apply the Cauchy-Schwarz inequality to
this expression and find that

(*) < CIC = 2)fILY.(x) /2.

The result now follows if we argue as we did in the proof of Theorem 4.2.

5. A family of Dirichlet series associated with negatively curved manifolds

Let X be a complete simply connected Riemannian manifold which
is the Riemannian covering of a compact Riemannian manifold. Let d
denote the Riemannian distance function on X and let B (x) = {y €
Xl|d(x,y) < T}. Then according to [10, Remark 1]

. vol(B,(x))
1 1 AT
( ) T—lg-loo T
with 4 independent of x . We note that if X = G/K with the Riemannian

structure corresponding to B, and { is the volume of the unit sphere in
p, then

=h,

[ reave =¢ /K /0 p(£)f (e exp tH) dit
for integrable f on X . From this it is easy to see that
Vol(B,(1K)) ~ ¢e** ™7 12 p(H).

Thus in this case we have E(x) = { and & = 2p(H). Manning has
interpreted £ as the “topological entropy” of the geodesic flow.

Returning to the general situation, let I" be a group of isometries of X
acting freely and such that Vol(I'\X) < c. If x, y € X, we set

2) Li(x,y,s)=) e #dxn,
yer
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Equation (1) above implies that the above series converges absolutely for
Res > h/2 to a holomorphic function of s in this range. We now show
how the results of this paper can be used to analyze these seriesif X = G/K
(as in the previous sections). Let A denote the Laplace-Beltrami operator
of X.If X=G/K,then Af =Cf for f € C*(G/K).

Theorem 5.1. Let X = G/K and let T C G be a discrete torsion-
Jfree subgroup such that I'\G has finite volume. Then L (x,y,s) has a
meromorphic continuation to C such that the poles in the range Res > 0,
s#0, are szmple and at points oftheform v—2j with j=0,1,2, and
v’ —p(H) is an eigenvalue of A on L’ M\X). L (x y,S) hasa simple
pole at s = p(H) and

Ress=p(H) LI‘(X H y s S) = C/ VOI(M)

Furthermore, if 0 > A > 4, > --- are the eigenvalues of A on L2(F \X)
and if A, = si — p(H)* with s, > max{p(H) — 2, 0}, then L (x,y,s)
is holomorphic for Res >s,, s # p(H), and Lp(x,y,s) has at worst a
simple pole at s = s, with residue

c(s,p/pH) S0, (00,(»)
j

with ¢ . an orthonormal basis of the A, eigenspace Jor A in L2(F\X ).

Proof If x,ye X, x=gK, y=~hK,and g"'h = k, exptHk,,
then d(x, y) = |7]. We write X = xK for x € G. Then Theorem 1.2 can
be rephrased as

Qy(x_ly) - e—(V+p)(H)d(f,i?) (1 +Zak(l/)62kd(x’§))

k>1

with a,(v) rational in v and holomorphic for Rev(H) > 0. Further-
more, if d(x,y)>1 and ¢ < 0 is given, then there exists a polynomial
f.(v) of degree <d(c) such that

- - N o
(V) {Q,,(x_ly) _ e~ WwHAHAE.Y) (1 +Zak(y)e—2kd(x,y)> H

k=1
)d(c)e—{Re(u+p)(H)+2N+2—e}d(x,7)

(

<C, ,(1+]v|

for all ¢ > 0. We note that there exists ¢, < 0 such that fcD can be
taken to be the constant polynomial 1 and d(c,) = 0. Let f be as in the
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preceding sections. If Rev(H) > p(H), then

~ —1 -1

P, (x,y) =6, B(x y»)0Q,(x »y)

yel
=0,(V)L(X,¥, v(H))
+6,(1) Y (B(x ™ yy) — 1) WD)
y€r’

+8,() Y BT 0, (x " yy) — e WA DY,
yer

If w is a compact subset of G, and x, y € w, then the second sum is
over a finite set depending only on . Thus the second term extends to a
meromorphic function which is holomorphic wherever 6, is. (x) implies
that the third sum is dominated by

Ze—(Re(V+P)(H)+2—6)d(x,yy)

yel
for all ¢ > 0. Therefore that the third term has a meromorphic continua-
tion to Rev(H) > p(H) — 2. This implements the meromorphic continu-
ationof L(X,¥,s) to Rev(H) > p(H)-2. Since J,(v) is holomorphic
for Rev(H) > 0, we see that the principal parts of L (X, ¥, v(H)) and
51(1/)'1P1,V(x, y) are the same for Rev(H) > p(H) — 2. We now con-
tinue the continuation as above. We write (a,(v) = 1)

N
P, (x, ) = 6,(")Lp(X, ¥, v(H)) + 6,(v) Y, (v)L(X, ¥, v(H)+2k)

k=1

v 2kld(E, ¥F

+0 (l/) Z(B(x yy) — I)Zak( —[(v+p)(H)+2k)d(Z, ¥P)
y€r

8,13 Bx )
yell
1 - (w+p)(H)+2Kk1d(X , 75)
_ Lt -
X {Qu(x ?y) —Zak(u)e ’ vy }
k=1

The right-hand side of the above equation consists of four terms. The
third term only involves finite sums (see the beginning of this proof) and
thus has a meromorphic extension to a*C with poles only at the v where
6,(v) or a,(v), 0 <k < N, have poles. Hence this term is holomorphic
for Rev(H) > 0. If we argue as above, the fourth term is meromorphic
for Rev(H) > p(H)— 2N — 2 with poles at the v for which J,(v) has a
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pole or some g, (v), 0 < k < N, has a pole. We can therefore use the first
two terms to see that since L.(x, y,s) continues to Res > p(H) -2, it
continues to Res > p(H) — 4, etc. The assertion about the pole structure
is now clear. We are left with the calculation of the residue of L(x, y, s)
at s = p(H).

The arguments above, combined with Theorem 4.5, imply that the prin-
cipal part of L(X,¥,s) at s = p(H) is equal to that of

8,) " EIvol(T\X)(p(H) — v(H)*)] ™

since the space of square integrable eigenfunctions for the eigenvalue O is
the space of constant functions. Thus

Res,_ i Lr(x, v, 5) = =8, (p(H)) ™ {[2p(H) vol(T\X)] .

But, d,(v) = —(21/(H)c(1/))_1 and with our normalization ¢(p) = 1. The
last assertion follows from Theorem 4.5 and the argument which we just
used to analyze the pole at p(H).

Corollary 5.2 (notation as in Theorem 4.1). Lef x,y € X. Then

3 1~ T von\X), T - oo
yel’
d(yx,y)<T
Proof. Fix x,y. We enumerate the elements of I" as y,, 7,, --- . Set
u;=d(y;x,y) and D(s) = L(x, y, s — p(H)). Then

D(s) = ie_s”f.
j=1

Since the series defining D(s) converges absolutely and uniformly on the
strips Res > 2p(H) + ¢, € > 0, D(s) has a meromorphic continuation
to C. If s, as in the preceding theorem exists, then set ¢, = p(H) +s,,
otherwise set {; = max{2p(H) —2,0}. Thus D(s) is holomorphic for
t, < Res, s # 2p(H). The Ikehara-Wiener theorem (cf. {1, p. 524])
therefore applies and implies that

20(H)T
3 1~ (Res i DN, T o 4o,

u;<T

The result now follows from the previous theorem,

Note. In [10] a general result of the above form for X of strictly neg-
ative curvature and I'\.X compact was announced. In the special case of
constant negative curvature (i.e., G is locally isomorphic with SO(z, 1))
the precise result as above is given for I'\X compact. The finite volume
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version seems to be new. These results of Margulis, combined with ours
above, suggest the following conjecture.

Conjecture 5.3. Let X and T be as in the beginning of this section
and assume that X has strictly negative curvature. Then L.(x,y,s) has
a meromorphic continuation to C (perhaps only for Res > h/2—¢ for some
e > 0) and there exists an ¢ > 0 such that s = h/2 is the unique pole for
Res > h/2—¢. Theresidueat s =h/2 is Cy(I'x, I'y)/ Vol(I'\X).

One might be “brash” enough to augment this conjecture with an as-
sertion generalizing that in Theorem 5.1 for the “next” eigenvalue of the
Laplacian. We note that the above conjecture combined with the Ikehara-
Wiener theorem yields a complete generalization of the above cited result
of Margulis. In the context of the actual theorems, ie., X = G/K as
above, we have a conjecture about the error term.

Conjecture 5.4. Let t; be as in the proof of Corollary 5.2. Then

3o 1= voun\X) = 0" ) as T — +oo.

yel
d(yx,y)<T

We note that the above conjecture would follow from well-known results
on Dirichlet series (cf. [7, Theorem 10.7g]) if we could show the following:
(i) im,_, Ly(x,y,s)=0 for Res >0.
(i1) There exist 0 < ¢, < ¢, and 7, > 0 such that

PV / ¥ L(x, v, t,+i1)dA

converges uniformly for 7 > 7.
Notice that (i) and (ii) would follow if we could prove the analogous
results for P, .
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